Abstract

The alliance between the Internet of Things (IoT) and healthcare has the potential to improve healthcare assistance at different stages of care through distributed vital sign sensing, paving the way for domiciliary hospitalization. In this work, we propose an innovative design for an IoT-based interoperable healthcare system to wirelessly monitor and classify patient status. To support our research, we identify gaps, and discuss standards, protocols and technologies based on works that use relevant IoT applications in healthcare. The proposed architecture is centered on several low-energy unobtrusive sensors attached to the patients’ bodies, as well as their beds, which encompass data acquisition nodes linked to a smart gateway that aggregates data. The smart gateway is integrated with an existing hospital information system through the exchange of Electronic Health Records (EHR), making relevant patient data easily available to health professionals on systems which are familiar to them. A use case scenario is presented in order to fulfill functional and non-functional requirements and provide a better understanding of connection and communication between the distinct entities of the proposed architecture, which is based on Bluetooth Low Energy (BLE) technology at the data acquisition level, the Message Queuing Telemetry Transport (MQTT) protocol at the internal level, and on the Fast Healthcare Interoperability Resources (FHIR) standard at the higher level.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.