Abstract

In recent years, hospitals have spent a significant amount on technologically advanced medical equipment to ensure not only the accuracy and reliability of medical devices, but also the required level of performance. Although medical devices have been revolutionized thanks to technology advancements, outdated maintenance strategies are still used in healthcare systems and services. Also, maintenance plans must often be developed for a mixture of advanced and obsolete technologies being used in medical devices. Therefore, most healthcare organizations have been facing the challenge of detecting equipment-related risks that would have been alleviated if effective integrity monitoring mechanisms were in place. Additionally, continuously growing volumes of large data streams, collected from sensors and actuators embedded into network-enabled sensors and microprocessors of medical equipment, require a scalable platform architecture to support the necessary storage and real-time processing of the data for device monitoring and maintenance. This paper investigates the issue of maintaining medical devices through an Internet-of-Things (IoT)-enabled autonomous integrity monitoring mechanism for those devices generating large-scale real-time data in healthcare organizations. The proposed architecture that includes an integrity monitoring framework and a data analytics module ensures the complete visibility into medical devices and provides a facility to predict possible failures before happening.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call