Abstract

Organic electrical gas sensors have been developed for many decades because of their high sensitivity and selectivity. However, their industrialization is severely hindered by their intrinsic humidity susceptibility and poor recovery. Conventional organic sensory materials can only operate at room temperature owing to their weak intermolecular interactions. Herein, we demonstrate using a croconate polymer (poly-4,4'-biphenylcroconate) that the "ion-in-conjugation" concept enables organic gas sensors to operate at 100 °C and 70 % relative humidity with almost complete recovery. The fabricated sensor had a parts-per-billion (ppb) detection limit for NO2 and showed the highest sensitivity (2526 ppm-1 at 40 ppb) of all reported NO2 chemiresistive sensors. Furthermore, charge transfer increased with temperature. Theoretical calculations and in situ FTIR spectra confirmed the ion-in-conjugation-inspired hydrogen bond as key for excellent sensitivity. A NO2 alarm system was assembled to demonstrate the feasibility of this sensor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.