Abstract

We synthesized a core-shell resin structure with abundant architecture and excellent thermal stability through polymerization. Imidazole ionic liquid with varying carbon chain lengths was immobilized on the surface, resulting in the preparation of metal-free, halogen-free core-shell catalysts with different carbon chain lengths via HCO3- exchange. Characterization using FT-IR, XPS, and various techniques revealed the exceptional performance of our synthetic catalyst in terms of its internal structure. After extensive experimentation, we discovered that the synthesized catalyst exhibits dual functionality for epoxidation and CO2 cycloaddition reactions without requiring solvents or co-catalysts. The epoxidation system demonstrated remarkable conversion rates and selectivity while also exhibiting strong recyclability in heterogeneous reactions, according to kinetic parameters, the reaction order of styrene, TBHP and catalyst during epoxidation is approximately 1, the reference factor for this reaction was calculated to be 6.7×109 (L2·mol−2·min−1), with an activation energy of 48.9 kJ/mol obtained from analyzing reaction rates at different temperatures. In the CO2 cycloaddition reaction, our catalyst exhibited an advantage in catalyzing ring-opening reactions, achieving a conversion rate of 95 % for styrene oxide within six hours along with over 99 % selectivity towards cyclic carbonate formation. It is suggested that the epoxide reaction is carried out in steps, and it is inferred that the catalyst PS-ImC4HCO3 and TBHP are produced into peroxy intermediate active species TBA and HCO4, and the reaction between HCO4- and styrene is the determination step of the total reaction. The reaction rate constant k=0.009 of the absolute step is calculated based on the global optimization algorithm

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.