Abstract
In this work the utilization of the Ion Beam Induced Charge (IBIC) technique is explored to assess the resolution a 2 MeV Li + ion microbeam raster scanning a micrometer-sized FIB-machined hollows in a silicon photodiode. The analysis of the maps crossing the FIB machined structures evidenced a drop in charge collection efficiency across the perimeter of the hollows combined with a significant recovery of the signal amplitude at the center of the microstructures, thus forming a micrometer-sized feature which can be exploited to estimate the resolution of the probing beam. The results were interpreted according to numerical simulations based on the Shockley-Ramo-Gunn as originating from a FIB-induced surface space charge density.These results offered additional information with respect to what achievable by a confocal photocurrent microscopy analysis of the same device, due to the significantly shorter focal depth of the latter with respect to the probing ion beam.This study suggests the viability of an effective method to evaluate of the resolution of ion microbeams in processes and experiments, which could be beneficial in emerging fields (deterministic implantation, micro-radiobiology, ion lithography) demanding beam spot sizes below the micrometer scale.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.