Abstract

An inviscid analytical theory of a slow steady liquid mass rotation during the swirl-type sloshing in a vertical circular cylindrical tank with a fairly deep depth is proposed by utilising the asymptotic steady-state wave solution by Faltinsen et al. (J. Fluid Mech., vol. 804, 2016, pp. 608–645). The tank performs a periodic horizontal motion with the forcing frequency close to the lowest natural sloshing frequency. The azimuthal mass transport (first observed in experiments by Prandtl (Z. Angew. Math. Mech., vol. 29(1/2), 1949, pp. 8–9)) is associated with the summarised effect of a vortical Eulerian-mean flow, which, as we show, is governed by the inviscid Craik–Leibovich equation, and an azimuthal non-Eulerian mean. Suggesting the mass-transport velocity tends to zero when approaching the vertical wall (supported by existing experiments) leads to a unique non-trivial solution of the Craik–Leibovich boundary problem and, thereby, gives an analytical expression for the summarised mass-transport velocity within the framework of the inviscid hydrodynamic model. The analytical solution is validated by comparing it with suitable experimental data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call