Abstract

In order to respond to market rapidly, save design time, reduce the cost and particularly design the machine in a predictable and reliable manner, an approach based on the integration of virtual machine tool and workpiece material removal mechanism is proposed in this article for the investigation of centerless grinding process, the prediction of workpiece roundness generation and the evaluation of dynamic characteristics of grinding system. In this approach the machine structure model is firstly presented by incorporating the kinematic relationship of the feed drive system and the material dynamic parameters of the grinding system. Then the virtual machine tool model is built by the combination of the machine mechanical structure and the control loop. Finally the virtual centerless grinding is realized by integrating the virtual machine and the workpiece material removal mechanism through their coupled surface regeneration mechanism. The comparison of the experimental and theoretical results demonstrates that this virtual centerless grinding approach can investigate the workpiece roundness generation accurately.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.