Abstract

Classification algorithms are commonly used as a decision support system for diagnosing many diseases, such as breast cancer. The accuracy of classification algorithms can be affected negatively if the data contains outliers and/or noisy data. For this reason, outlier detection methods are frequently used in this field. In this study, we propose and compare various models that use clustering algorithms to detect outliers in the data preprocessing stage of classification to investigate their effects on classification accuracy. Clustering algorithms such as DBSCAN, HDBSCAN, OPTICS, FuzzyCMeans, and MCMSTClustering (MCMST) were used separately in the data preprocessing stage of the k Nearest Neighbor (kNN) classification algorithm for outlier elimination, and then the results were compared. According to the obtained results, MCMST algorithm was more successful in outlier elimination. The classification accuracy of the kNN + MCMST model was 0.9834, which was the best one, while the accuracy of kNN algorithm without using any data preprocessing was 0.9719.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.