Abstract
To evidentiate the role of the nature of sulfonate ancillary ligands on the value of the quadratic hyperpolarizability of Zn(II) complexes with stilbazole-like ligands, the second-order nonlinear optical (NLO) properties of [ZnY(2)(4,4'-trans-NC5H4CH=CHC6H4NMe2)2] complexes (Y = CF3SO3, CH3SO3, or p-CH3C6H4SO3) are investigated. By working at relatively high concentrations (>3 x 10(-4) M), the positive effect of the triflate ligand remains unique while, with nonfluorinated sulfonate ligands, the second-order NLO response is comparable to that of the related complexes with acetate or trifluoroacetate as ancillary ligands. However, at dilutions higher than 10(-4) M, all of the sulfonate complexes reach huge quadratic hyperpolarizabilities because of solvolysis with the formation of cationic species such as [ZnY(4,4'-trans-NC5H4CH=CHC6H4NMe2)2]+, characterized by a large second-order NLO response. This view is supported by careful conductivity measurements. The same behavior occurs if 4,4'-trans-NC5H4CH=CHC6H4NMe2 is substituted by 4,4'-trans,trans-NC5H4(CH=CH)2C6H4NMe2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.