Abstract

In the present work an attempt has been made to investigate statistical association between solar neutrino flux data (both D2O and Salt data) collected from Sudbury Neutrino Observatory and solar irradiance data detected by Earth Radiation Budget Satellite. To serve the present purpose we have used the Multifractal Detrended Cross Correlation Analysis (MF-DCCA) based on Detrended Fluctuation Analysis (MF-X-DFA) method and the Detrending Moving Average Analysis (MF-X-DMA) which explores the long term power-law cross correlations between above two pairs of data sets. Investigation also has been made to find the frequency and time dependent local phase relationship in each pair of data sets using continuous wavelet transform (CWT) based Semblance Analysis. The Semblance Analysis reveals that there exists positive phase correlation as well as negative phase correlation between solar irradiance and D2O data at different time sub-intervals. This type of mixed phase correlation is also experienced between solar irradiance and Salt data at different time sub-intervals. The causal relationship between the D2O and the solar irradiance time series and that between Salt and solar irradiance time series have been revealed using Singular Spectral Analysis (SSA). Calculations indicate that possibly the present solar neutrino flux data (both D2O and Salt data) is supportive to predict the solar irradiance data but may not the vice versa which in turn suggests that the variability of nuclear energy generation process inside the Sun may influence the solar activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call