Abstract
This paper is an extended study on the model of the hysteretic dynamics of magnetorheological dampers based on a phenomenological phase transition theory (Wang and Kamath in Smart Mater. Struct. 15(6):1725–1733, 2006). It is demonstrated that, by appropriately choosing model parameters, the frequency dependence of the hysteretic dynamics can be captured very well by the model based on phase transition theory. Whilst by introducing an appropriate rescaling coefficient to account for the strength of the magnetized particle chains with various magnetic field strengths, the field strength dependence of the hysteretic dynamics can also be captured very well by the same differential equation with the same set of model parameters. There are in total eight model parameters introduced for capturing the hysteretic dynamics, including its dependence on the loading rate and field strength.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.