Abstract

This paper is an extended study on the model of the hysteretic dynamics of magnetorheological dampers based on a phenomenological phase transition theory (Wang and Kamath in Smart Mater. Struct. 15(6):1725–1733, 2006). It is demonstrated that, by appropriately choosing model parameters, the frequency dependence of the hysteretic dynamics can be captured very well by the model based on phase transition theory. Whilst by introducing an appropriate rescaling coefficient to account for the strength of the magnetized particle chains with various magnetic field strengths, the field strength dependence of the hysteretic dynamics can also be captured very well by the same differential equation with the same set of model parameters. There are in total eight model parameters introduced for capturing the hysteretic dynamics, including its dependence on the loading rate and field strength.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call