Abstract

Abstract Huff and Puff gas injection through horizontal wells in shale petroleum reservoirs is moving cautiously from being a promising theoretical possibility, to becoming a reality for increasing oil recovery. This study investigates how oil recoveries from shales can be increased by (1) a combination of refracturing and huff and puff gas injection, and (2) huff and puff gas injection when the length of the gas injection and production cycles are increased over time. The possibility of improving oil recoveries from shales by a combination of refracturing and huff and puff gas injection is investigated using a compositional simulation approach. Previous studies published in the literature, have considered the implementation of regular constant-time cycles throughout the huff and puff process. This may not be the optimum strategy. In this work, the use of cycles with increasing time-lengths is investigated with a view to maximize the oil recovery by huff and puff gas injection. The combination of (1) huff and puff gas injection followed by (2) refracturing and (3) stopping gas injection is found to be a good option to increase oil recovery from shale petroleum reservoirs when the initial hydraulic fracturing (IHF) has been successful. The benefits of this approach are demonstrated through a comparison made when refracturing is carried out without previous huff and puff injection. If the IHF has not been implemented properly, the huff and puff gas injection does not provide attractive recoveries. In this case, a refracturing job followed by huff and puff gas injection is shown to improve recoveries significantly. A comparison of the different scenarios considered in this paper shows that proper design of the injection and production schedule is very important in the development of a huff and puff gas injection. Optimizing the schedule by using the appropriate cycles with variable increasing-time spans can lead to improving the huff and puff performance. This study investigates how to increase oil recovery from shale petroleum reservoirs by (1) the combined use of refracturing and huff and puff gas injection, and (2) the use of cycles of variable length as opposed to the regular-length constant-time cycles considered in previous publications. To the best of our knowledge, the two cases considered in this paper are novel and have not been published previously in the literature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call