Abstract

In the present research, friction stir processed (FSPed) nano-hydroxyapatite reinforced AZ91D magnesium matrix surface composite has been developed with improved ultimate tensile strength (UTS) and biological performance, which are needed for the bio-implants. Nano-hydroxyapatite reinforcement with varying proportions (5.8%, 8.3%, and 12.5%) was introduced into the AZ91-D parent material (PM) by the grooving method with different grooves of 0.5, 1 & 1.5 mm of width and 2 mm depth machined on the surface of the PM. Taguchi's L-9 orthogonal array was employed to optimize the processing variables for enhancing the UTS of the developed composite material. The optimum parameters were discovered to be the tool rotational speed of 1000 rpm, transverse speed of 50 mm/min, and 12.5% reinforcement concentration. The results revealed that the tool rotational speed contributes the highest effect (43.69%) on UTS, followed by the reinforcement percentage (37.49%) and transverse speed (18.31%). The FSPed samples at the optimized parameter setting confirmed the enhancement of 30.17% and 31.86% in UTS and micro-hardness, respectively, compared to the PM. Cytotoxicity of the optimized sample was also found superior compared to the other FSPed samples. The optimized FSPed composite's grain size was 6.88 times smaller than the AZ91D parent matrix material. The improved mechanical and biological performances of the composites are attributed to the significant grain refinement and proper dispersion of the nHAp reinforcement in the matrix.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.