Abstract
In this paper, the effects of wind flow on real-time structural health monitoring (SHM) with Lamb wave-based technique is studied with the dedicated experimental platform. Firstly, the environmental signal coming from the wind-induced vibration is observed at experimental conditions with different wind speeds by using a couple (two) of piezoelectric transducers. In order to optimize the received signal for real-time monitoring, the shunt resistor, working as the filter for the signal processing, is introduced to suppress the low-frequency noise from the wind-induced vibration. Both experimental and modeling work have been conducted to cross verify the results. Moreover, the specimen with the shunt resistor has been tested at different wind speeds condition with proper results. Furthermore, in order to verify the feasibility for practical real-time SHM, the test with only one piece of piezoelectric transducer operated as sensor and actuator simultaneously has also been conducted, and the environmental signal could be filtered as expected. The work studies the effects of wind flow on real-time SHM with Lamb wave-based technique and the signal processing method is proposed to eliminate the resultant effects, which could be applied into the real-time aircraft health monitoring.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.