Abstract
The demand for carbon brushes with specific properties and improvements in production economics in recent years has led to increased interest in metal-graphite composites. Metal matrix composites are considered excellent materials to obtain properties superior to those of the constituent phases and meet the specific requirements of material application. In the present study, we suggested a new composite material by utilizing nanomaterials to improve the properties of metal-graphite composite material usually used as carbon brushes. This has been achieved by adding different percentages of 0.1-0.5wt % of carbon nanotubes, carbon nanospheres, or both to the metal matrix composite. The samples were prepared by powder metallurgy technique. The XRD results gave a sharp line and indicated a high crystalline structure and little amorphous, which improved the conductivity performance of the composite produced within the structure of this work. The density measurement chart results showed an increase in the amounts of the carbon nano additives leading to a decrease in the density of the sample. The investigation of nano additives on hardness showed that increases in the additive led to reduced hardness. On the other hand, the resistivity values have reduced gradually when there is an increase in the amounts of the carbon nano additives, especially on the CNT, which gives better results than CNS, which we obtained the resistivity value =(0.32 Ωcm), Comparing with commercial-grade containing free of nano additives (1.3Ω cm).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.