Abstract

The scope of this paper is to investigate the dynamics of a rotor-bearing system of high-speed under recently developed analytical bearing models. The development of a theory that can yield the dynamic response of a high-speed system without short/long bearing approximation and without time-consuming numerical methods for the finite-length bearing model is the outcome of this work. The rotor system is introduced as a rigid body so that the dynamics of the system are influenced only from the nonlinear bearing forces which are introduced with closed form expressions. The outcome is a system of nonlinear equations and its solution produces the dynamic response of the high-speed system using exact analytical solution for the bearing forces. The transient dynamic response of the system is evaluated through the wide range of rotating speed and under different bearing solutions including short bearing approximation, presenting the subsynchronous components that are developed when instabilities occur. Time-frequency analysis of the resulting response time-series is presented and the outcome is compared with that obtained from numerical solution of the bearing lubrication and with the short bearing approximation model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.