Abstract
This work presents the development and demonstration of a novel underwater wet laser welding technique, where unlike the conventional underwater wet laser welding, a water-jet parallel to the weld pool surface was introduced inside the water environment. The water flow was found to enhance the removal of water vapour formed at the laser-water-workpiece interface without creating hindrance to the molten weld bead, resulting in lower energy loss due to absorption and scattering, thus enhancing the laser energy coupling efficiency to the material. The process was studied for bead-on-plate welding on 4 mm stainless steel (SS) sheets using a 2 kW Yb-Fiber laser (wavelength 1.07 µm), with water column height of 5–15 mm, and a parallel water jet of speed 2–3 m/s, under continuous (CW) and pulsed mode (modulated power) laser operation. The major objective of the work was to study the effect of water flow and mode of laser operation on the formation and growth of vapour layer at the processing zone and investigate its effect on laser energy coupling efficiency. Further, their effect on weld bead geometry and microstructure was investigated. Welding operation with modulated laser power was found to produce higher weld depth compared to CW mode with same average laser power due to lower scattering loss and better energy coupling under pulsed mode operation. The micro-structural investigation has showed the formation of finer grains and oxide or carbide precipitation in case of underwater welding, indicating the enhanced cooling phenomena in this technique.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.