Abstract

Class and shape transformation functions are proposed to carry out the parametric design of the blade profiles because fan efficiency is closely related to the shape of blade profiles. An optimization with the objectives of fan efficiency and static pressure based on the Kriging models was established, and numerical simulation data were applied to construct the Kriging models. The dissipation function was used to analyze the fan energy loss. The prediction results show that the maximum accuracy error between the Kriging model and the experimental data is approximately 0.81%. Compared with the prototype fan, the optimized fan was able to ameliorate the distribution of the flow field pressure and velocity; the outlet static pressure increased by 9.03%, and the efficiency increased by 2.35%. The dissipation function is advantageous because it can intuitively indicate the location and amount of energy loss in the fan, while effectively obtaining the total energy loss as well. The situation of energy loss was mutually validated with the density of the static pressure contours and the streamline distribution. The flow fields at the leading edge of the optimized fans were improved by analysis of the dissipation function, and the leading edges of the three impellers selected from the Pareto front were narrower and flatter than those of the prototype fan.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call