Abstract

Tool wear and its service life have great influence on machining quality, production efficiency and cost. Tool wear is a three-dimensional phenomenon accompanied by physical and chemical factors. However, the tool wear model and evaluation standard characterised by two dimension are still widely used today. In order to explore the use of three-dimensional topography to track the tool wear trend and measure the tool wear condition, relatively high speed cutting experiments were done for cutting three kinds of materials. Laser scanning confocal microscope was used to measure the worn tool topography at different cutting times. After that, the deficiency of two-dimensional indicators and validity of three-dimensional topography in evaluating tool wear were analysed. Besides, some improved tool wear evaluation methods were proposed. [Submitted 19 December 2016; Accepted 24 October 2017]

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.