Abstract

Bis(indolyl)methane (BIM) as one of the main active components of anticancer and antibacterial drugs is applied in medicinal and extensive area of chemistry. In this research, interaction of human and bovine serum albumins as drug carriers with BIM was investigated using spectroscopy methods and molecular modeling study. The fluorescence quenching measurements at the range of 293–310 K revealed that the quenching mechanisms for human and bovine serum albumins are static and dynamic processes, respectively. The results of quenching study were used to calculate thermodynamic parameters which indicated that the binding process occurs spontaneously and demonstrated that human and bovine serum albumins provide very good binding via hydrogen bonds, van der Waals forces, and hydrophobic interactions. Förster energy transfer measurements, synchronous fluorescence spectroscopy, and docking study showed BIM binds to the Trp residues of human and bovine serum albumin molecules in short distances. Docking study showed that BIM molecule has two hydrogen bonds and several van der Waals contacts with human and bovine serum albumins. Results of FT-IR and CD spectroscopy demonstrated that serum albumins interact with BIM molecule mainly via hydrophobic and hydrophilic interactions and the secondary structure of serum albumins are changed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.