Abstract
Utilizing the body surface as the signal transmission medium, capacitive coupling human body communication (CC-HBC) can achieve a much higher energy efficiency than conventional wireless communications in future wireless body area network (WBAN) applications. Under the CC-HBC scheme, the body surface serves as the forward signal path, whereas the backward path is formed by the capacitive coupling between the ground electrodes (GEs) of transmitter (TX) and receiver (RX). So the type of communication benefits from a low forward loss, while the backward loss depending on the GE coupling strength dominates the total transmission loss. However, none of the previous works have shown a complete research on the effects of GEs. In this paper, all kinds of GE effects on CC-HBC are investigated by both finite element method (FEM) analysis and human body measurement. We set the TX GE and RX GE at different heights, separation distances, and dimensions to study the corresponding influence on the overall signal transmission path loss. In addition, we also investigate the effects of GEs with different shapes and different TX-to-RX relative angles. Based on all the investigations, an analytical model is derived to evaluate the GE related variations of channel loss in CC-HBC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Biomedical Circuits and Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.