Abstract

Gears are critical element in a variety of industrial applications such as machine tool and gearboxes. An unexpected failure of the gear may cause significant economic losses. For that reason, fault diagnosis in gears has been the subject of intensive research. Vibration analysis has been used as a predictive maintenance procedure and as a support for machinery maintenance decisions. As a general rule, machines do not breakdown or fail without some form of warning, which is indicated by an increased vibration level. By measuring and analysing the machine’s vibration, it is possible to determine both the nature and severity of the defect, and hence predict the machine’s failure. The vibration signal of a gearbox carries the signature of the fault in the gears, and early fault detection of the gearbox is possible by analysing the vibration signal using different signal processing techniques. This paper presents a review of a variety of diagnosis techniques that have had demonstrated success when applied to rotating machinery, and highlights fault detection and identification techniques based mainly on vibration analysis approaches. The paper concludes with a brief description of a new approach to diagnosis using neural networks, fuzzy sets, expert system and fault diagnosis based on hybrid artificial intelligence techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.