Abstract

This paper presents an investigation on dynamic characteristics of a rod-fastened rotor. Based on the framework of a traditional Riccati transfer matrix method (TMM), an improved Riccati TMM considering contact effects brought by a face tooth is developed. A correction coefficient for equivalent stiffness imported from a three-dimensional (3D) finite element contact case analysis is defined to evaluate the contact effects, and then the dynamic model of the rod-fastened rotor including bearing support is established. A computer program is further developed to obtain the dynamic characteristics such as critical speeds of lateral vibration, mode shapes, and an unbalance response. The improved TMM is applied to investigate the dynamic characteristics of a real central tie rod rotor of the class-F gas turbine for verification of its effectiveness, and the calculated critical speeds are in good agreement with test measurement results, implying that the method is accurate and the dynamic model is reliable. This approach can also be applied to analyze other combined rotors with a homogeneous structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call