Abstract

Abstract In this study, we present the structural, optical and electronic properties of zinc blende cadmium sulfide (CdS) and cadmium telluride (CdTe) as well as the intermixed zinc blende ternary CdS1-xTex compound with the compositional variation of S and Te elements. The density functional theory (DFT) method by incorporating the Hubbard model has been utilized to comprehend the relationships between the change of band gap with respect to the molar fraction and its subsequent effects in electronic structures. A 2 × 2 × 2 supercell with 16 atoms has been employed in the molecular design structure of CdTe and CdS. The exchange-correlation potential has been calculated using GGA + U approximation as implemented in the QUANTUM ESPRESSO package along with BURAI software as graphical user interface (GUI). The obtained calculation outcomes are in reasonable agreement with the experimental results in the case of lattice constant and refractive index (n), however, results demonstrate some discrepancy in band gap estimations. The results also exhibit band gap bowing of the ternary CdS1-xTex alloy with the variation of molar fraction (x) which suggest the shrinking of the band gap to the lowest value at x = 0.5 as CdS0·5Te0.5.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.