Abstract

Purpose This study aims to use regression Least-Square Support Vector Machine (LS-SVM) as a probabilistic model to determine the factor of safety (FS) and probability of failure (PF) of anisotropic soil slopes. Design/methodology/approach This research uses machine learning (ML) techniques to predict soil slope failure. Due to the lack of analytical solutions for measuring FS and PF, it is more convenient to use surrogate models like probabilistic modeling, which is suitable for performing repetitive calculations to compute the effect of uncertainty on the anisotropic soil slope stability. The study first uses the Limit Equilibrium Method (LEM) based on a probabilistic evaluation over the Latin Hypercube Sampling (LHS) technique for two anisotropic soil slope profiles to assess FS and PF. Then, using one of the supervised methods of ML named LS-SVM, the outcomes (FS and PF) were compared to evaluate the efficiency of the LS-SVM method in predicting the stability of such complex soil slope profiles. Findings This method increases the computational performance of low-probability analysis significantly. The compared results by FS-PF plots show that the proposed method is valuable for analyzing complex slopes under different probabilistic distributions. Accordingly, to obtain a precise estimate of slope stability, all layers must be included in the probabilistic modeling in the LS-SVM method. Originality/value Combining LS-SVM and LEM offers a unique and innovative approach to address the anisotropic behavior of soil slope stability analysis. The initiative part of this paper is to evaluate the stability of an anisotropic soil slope based on one ML method, the Least-Square Support Vector Machine (LS-SVM). The soil slope is defined as complex because there are uncertainties in the slope profile characteristics transformed to LS-SVM. Consequently, several input parameters are effective in finding FS and PF as output parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.