Abstract

This paper addresses a two-agent scheduling problem on a single machine with arbitrary release dates, where the objective is to minimize the tardiness of one agent, while keeping the lateness of the other agent below or at a fixed level Q. A mixed integer programming model is first presented for its optimal solution, admittedly not to be practical or useful in the most cases, but theoretically interesting since it models the problem. Thus, as an alternative, a branch-and-bound algorithm incorporating with several dominance properties and a lower bound is provided to derive the optimal solution and a marriage in honey-bees optimization algorithm (MBO) is developed to derive the near-optimal solutions for the problem. Computational results are also presented to evaluate the performance of the proposed algorithms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call