Abstract

In this study, the performance of a high-temperature water gas shift reaction (WGSR) using a Fe-Cr catalyst along with a Pd alloy membrane was simulated by computational fluid dynamics (CFD). The influences of using Pd membranes, catalytic layer thickness ratio (R/R0), Reynolds number, and steam-to-CO ratio (S/C) on the reaction were investigated by comparing CO conversion and hydrogen recovery (HR). In the CFD simulation, one-tube and four-tube systems were simulated at 500 °C. This study also compared the performance between tandem and optimized configurations. The results show that the CO conversion can be improved up to 22.9% when the WGSR reactor system uses a Pd membrane compared to the system without a Pd membrane. The system has the best hydrogen recovery performance at S/C = 4 and R/R0 larger than 1.5. At Re=5, the optimized configuration for CO conversion has better performance when R/R0 is larger than 1.75. Compared to the tandem configuration, the optimized configuration also shows better performance for HR at every R/R0. The results indicate that a Pd membrane and optimized configuration can significantly improve CO conversion and that R/R0 and S/C optimization is very important for effective reactor performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.