Abstract

In this paper, a thorough investigation into the vibration response of bolted composite flanged-cylindrical shell structures, considering the material nonlinearity of carbon fiber-reinforced polymer composites (CFRP) and the joint nonlinearity of bolt connections, is presented. Firstly, a general semi-analytical modeling method for bolted composite flanged-cylindrical shell is developed based on the first-order shear deformation theory (FSDT) and the energy method. In this method, material nonlinearity is introduced by accounting for the frequency-strain dependency of material parameters. A joint model with non-uniform distribution parameters and dynamic boundaries is proposed to simulate the interface pressure distribution and nonlinear mechanical behavior of bolted joints. Then, for the general numerical model that incorporates both types of nonlinearities, the ability to accurately predict the nonlinear vibration behavior of a bolted composite flanged-cylindrical shell is demonstrated through experimental testing. Finally, an in-depth discussion is conducted on the influence of fiber layup patterns and bolt numbers on the nonlinear vibration response of the bolted composite flanged-cylindrical shells. The conducted analysis indicates that the proposed method can offer utility to designers, empowering them with the insights necessary for the dynamic optimization of such structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.