Abstract

A micromachined vibrating membrane is used to remove adsorbed proteins on a surface. A lead zirconate titanate (PZT) composite (3 x 1 x 0.5 mm) is attached to a silicon membrane (2,000 x 500 x 3 microm) and vibrates in a flexural plate wave (FPW) mode with wavelength of 4,000/3 microm at a resonant frequency of 308 kHz. The surface charge on the membrane and fluid shear stress contribute in minimizing the protein adsorption on the SiO(2) surface. In vitro characterization shows that 57 +/- 10% of the adsorbed bovine serum albumin (BSA), 47 +/- 13% of the immunoglobulin G (IgG), and 55.3~59.2 +/- 8% of the proteins from blood plasma are effectively removed from the vibrating surface. A simulation study of the vibration-frequency spectrum and vibrating amplitude distribution matches well with the experimental data. Potentially, a microelectromechanical system (MEMS)-based vibrating membrane could be the tool to minimize biofouling of in vivo MEMS devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.