Abstract

Nonlinear partial differential equations (NLPDEs) are widely utilized in engineering and physical research to represent many physical processes of naturalistic occurrences. In this paper, we investigate two well-known NLPDEs, namely, the (2 + 1)-dimensional first integro-differential KP hierarchy equation and the (2 + 1)-dimensional second integro-differential KP hierarchy equation, through a well-stable algorithm known as the ( G ′ G ′ + G + A ) -expansion approach for the first time. This algorithm is generally based on the expansion of function method and has the advantage of easy implementation and can provide a reliable solution to any NLPDEs. Employing the algorithm, we have been able to perceive the closed form solitons of the two chosen NLPDEs that physically represent the solitary wave solutions like, singular, singular periodic, bell, and anti-bell-shaped types of solitons. Furthermore, we explore the graphical manifestations of the obtained solutions, which are of the mentioned soliton types. From the findings of our in-depth study, we can state that the acquired solutions for the selected two equations may greatly aid to extracting the associated natural phenomena in mathematical physics such as fluid dynamics and ocean engineering.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.