Abstract

Cu and Ni clusters deposited on graphite and metal oxide (TiO 2, Al 2O 3) supports have been investigated by X-ray and UV photoelectron spectroscopy as well as Auger electron spectroscopy. The 2p core-level binding energy of the cluster increases with the decrease in the cluster size and the maximum shift in the case of the smallest cluster is 0.8–1.4 eV (relative to the bulk), the actual value depending on the substrate. The metal LMM Auger line shifts to lower kinetic energies with the decrease in the cluster size and this shift is considerably larger (1.4–3.3 eV) than that of the 2p binding energy. The shifts in the position and intensities of the valence bands with the cluster size have also been studied; the 3d band intensity approaches zero for the smallest cluster size studied by us, the number of atoms in the smallest cluster being in the range 25–75. One of the conclusions from the study is that the magnitude of the shifts in the core-level binding energy and the Auger kinetic energy due to the decrease in the cluster size depends on the substrate, being largest on an insulating substrate such as Al 2O 3 and least on graphite.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.