Abstract

Train driving is primarily a visual task; train drivers are required to monitor the dynamic scene visually both outside and inside the train cab. Poor performance on this visual task may lead to errors, such as signals passed at danger. It is therefore important to understand the visual strategies that train drivers employ when monitoring and searching the visual scene for key items, such as signals. Prior to this investigation, a pilot study had already been carried out using an eye tracking technique to investigate train drivers’ visual behaviour and to collect data on driver monitoring of the visual environment, Groeger et al. (2003) Pilot study of train drivers’ eye movements, University of Surrey. However, a larger set of data was needed in order to understand more fully train driver visual behaviour and strategies. In light of this need, the Transport Research Laboratory produced a methodology for the assessment of UK train driver visual strategies, on behalf of the Rail Safety and Standards Board and applied this methodology to conduct a large-scale trial. The study collected a wealth of data on train drivers’ visual behaviour with the aim of providing a greater understanding of the strategies adopted. The corneal dark-eye tracking system chosen for these trials tracks human visual search and scanning patterns, and was fitted to 86 drivers whilst driving in-service trains. Data collected include the duration and frequency of glances made towards different elements of the visual scene. In addition, the train drivers were interviewed after driving the routes, to try and understand the thought processes behind the behaviour observed. Statistical analysis of over 600 signal approaches was conducted. This analysis revealed that signal aspect, preceding signal aspect, signal type and signal complexity are important factors, which affect the visual behaviour of train drivers. Train driver interview data revealed that driver expectation also plays a significant role in train driving. The findings of this study have implications for the rail industry in terms of infrastructure design, design of the driving task and driver training. However, train driving is extremely complex and the data from this study only begin to describe and explain train driver visual strategies in the specific context of signal approaches. This study has provided a wealth of data and further analysis of it is needed to investigate the role of other factors and the complex relationships between factors during signal approaches and other driving situations systematically. Finally, there are important aspects of visual behaviour that cannot be examined using these data or this method. Investigation of other aspects of visual behaviour, such as peripheral vision, will require other methods such as simulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.