Abstract
The light lithophile (Li, Be and B) and halogen (F, Cl) elements are powerful tracers of fluid transfer due to their mobility during high temperature hydrothermal processes and metamorphic devolatilisation. Moreover, although a great deal of studies have been carried out on these elements in whole rock and minerals of altered rocks from divergent and convergent plate margins, an inventory for mineral phases from the altered Icelandic oceanic crust is still incomplete.In the present paper we report the results of in situ EPMA and SIMS investigations on variously altered magmatic (plagioclase and clinopyroxene) and hydrothermal phases (amphibole and epidote) from selected cuttings drilled at different depths (400 – 3000 m) of the well RN-17, Reykjanes geothermal system (SW Iceland). Our study has benefited from the use of high-magnification SEM investigations; from ICP-MS on Li, P-TIMS determinations of boron isotope composition (δ11B) and ID analyses of B contents on the whole rock.Particularly, SIMS data on epidote have shown that alteration beneath Reykjanes has been more efficient in the shallow and intermediate cuttings, while whole rock data on boron isotope composition have revealed that the alteration has been caused firstly by δ11B-poor fluids and successively by δ11B-rich seawater-hydrothermal fluids.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IOP Conference Series: Materials Science and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.