Abstract

In this research, a finite-element model of internal gear drives with different tooth thickness factors (non-standard gear drives) is generated in order to investigate their performance characteristics. The finite-element analysis includes a focused mixture of non-standard internal gear set under enhanced bending and contact strength conditions for an accurate assessment of wear and efficiency. The analysis comprised gear sets having higher bending strength compared to the conditions in the standard internal gear drive to evaluate the tooth wear and its efficiency. A state-of-the-art semi-analytical nonlinear contact mechanics construction is executed to model a non-standard internal gear transmission unit. The tooth thickness of the non-standard internal gear is varied concerning the stresses and is quantified as a function. The computed results also extended with internal gear sets at varying operating parameters. The results evidently specify that power loss decreases with the proper combination of operating parameters. The results are presented and strategies concerning the design of a non-standard internal gear are also deliberated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call