Abstract

A roughened silver electrode modified with silver nanoparticles is used as a substrate, on which high-quality surface-enhanced Raman spectroscopy (SERS) of isonicotinic acid (INA) are obtained, indicating that the silver-modified silver electrode is a highly SERS-active substrate. It is difficult to separate the contributions of the electromagnetic and chemical mechanisms to the great enhancement of the Raman signal. The shift by 5–20 cm −1 of the surface-enhanced Raman spectroscopy (SERS) bands and the change in their relative intensity compared with the ordinary Raman spectrum indicate the chemisorption of the sample molecules on the silver-modified silver surface. Furthermore, the silver nanoparticles modified on the roughened silver surface play the important role of magnifying the surface local electric field near the silver surface through resonant surface plasmon excitation. From the rich information on the silver-modified silver electrode obtained from high-quality potential-dependent SERS, we may deduce the adsorption behavior of INA and the probable SERS mechanism in the process. The probable reasons are given.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.