Abstract

In order to better characterize thermistors, a group of 405 bead-in-glass and disc thermistors were aged in constant temperature baths. Samples of 135 thermistors were aged in each of three constant temperature baths held at 0, 30, and 60 °C. Each sample was composed of 65 bead-in-glass and 70 disc thermistors which represented a total of six manufacturers and six resistance values. The thermistors were maintained at temperature for 550 to 770 days and their resistances and the bath temperatures were periodically monitored. Analysis of the data revealed systematic differences between bead-in-glass and disc thermistors upon ageing and indicated a dependence of ageing behavior on bath temperature and resistance value. Drift rates within groups of thermistors from each manufacturer were fairly uniform. Large initial changes in the drift rate for the disc thermistors at 30 and 60 °C (and to a much lesser extent in the bead-in-glass thermistors) require that thermistors for use at an accuracy level of a few tens of millikelvins be aged prior to use.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.