Abstract

An experimental and theoretical investigation of the utilization of finned tube compact heat exchanger for a heat recovery steam generator (HRSG) to recover both sensible and latent heat is presented in this paper. The heat transfer and pressure drop characteristics of the fin-and-tube heat exchanger are theoretically studied. A correlation of the combined convection–condensation heat transfer is derived by using the heat and mass transfer analogy models. The experimental results have shown that the Colburn factor ( j) and the friction factor ( f) for humid air, simulating the exhaust of HRSG, are larger than those for dry air. It has been also found that the f factor difference between humid air and dry air decreases as the air side Reynolds number increases and both the f factor and the j factor for humid air increase with the increase of water vapour concentration. A scheme for the design of compact heat exchanger for HRSGs is presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call