Abstract

An attempt has been made in this paper to investigate the effect of particle size distribution on coal flotation kinetics. The effect of particle size (Ps) on kinetics constant (k) and maximum theoretical flotation recovery (RI) was investigated while other operational parameters were kept constant. The relationship between flotation kinetics constant and theoretical flotation recovery with particle size was estimated with nonlinear equations. Analysis of variance showed that the effect of particle size on the kinetics constant was statistically significant at 95% confidence level. However, it was not significant on maximum theoretical flotation recovery (RI). Different regression methods were conducted in order to model the effect of coal particle size on flotation kinetics. Results indicated that the quadric regression method gave better prediction of the cumulative recovery for different particle size fractions. The correlation coefficient (R2) values of this model were 0.99, 0.996, 0.98, 0.98 and 0.97 for average of particle sizes of 37.5 µm, 112.5 µm, 225 µm, 400 µm and 625 µm respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.