Abstract

This study reports on the performance of multilayer film structures, which are a very prospective material for thin-film magnetic sensors. The magnetic and magneto-optical properties of iron and cobalt thin films and also ferromagnetic (FM)/non-magnetic layer (NML)/FM trilayers, prepared using a magnetron sputtering system, are presented. The FM layer thickness of tFe and tCo in trilayers varied from 25 to 100 Å and the NML thickness of tNML varied from 5 to 2000 Å. In the NML/FM samples, the NML thickness varied from 0 to 400 Å. The dependences of the hysteresis characteristics of Fe films on the NML thickness were found. The dependence of the transverse Kerr effect (TKE) magnitude on tFe was established. It was shown experimentally that TKE is sensitive to the magnetization up to a certain depth range below the surface of ferromagnetic—the information depth. It was discovered that the in-plane hysteresis characteristic of the trilayers is strongly dependent on tnml. So existence of the exchange coupling between FM layers through NML and its oscillatory behaviour (from antiferromagnetic (AF) to ferromagnetic (F) order) were experimentally established. It was found that the period AF–F–AF oscillations of exchange coupling is equal to 5–10 Å.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call