Abstract

This research investigates causes of the low performance of the first commercial wind farm in Thailand. The measured data suggests that this wind farm is uncompetitive. We found that this is due to poor turbine-site matching. In contrary to a traditionally held belief, the hub-height and turbine capacity are not the contributing factors. Key performance indicators are obtained for use as benchmarks in future wind farm appraisal. Then a turbine selection method is proposed to increase the capacity factor (CF) of the wind farm. CF is used as the main performance indicator, which can be compared to other wind farms. The real capacity factor (CFR) determined using measured data is 14.90%. This CFR is considerably lower than the estimated capacity factor (CFE) of 21.53%. The low CFR is due to grid instability. In addition, the CFR is lower than the CFE by a factor of 0.69. This information is valuable to investors and wind farm developers in a wind farm feasibility study. A graphical wind turbine-site matching is proposed. Wind turbine-site matching is achieved by using normalised power output plots and power density plots on a probability density graph of the wind site. This process consumes a short period of time. An improved turbine-site matching is achieved.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call