Abstract

Molecular dynamics has been employed to analyze the counterion and water atmospheres around the deoxynucleic guanidine (DNG) duplex G 12·C 12. These features are compared to those of DNA G 12·C 12. The chloride counterions of cationic DNG demonstrate fewer penetrations and only fleeting residence times in the minor groove, as opposed to the multi-nanosecond visits seen by sodium ions in DNA minor grooves. The 10 ns simulations also show the differences in hydration patterns between the DNG and DNA duplexes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.