Abstract

A computational method was devised to explore the relationship of charge separation, geometry, molecular dipole moment (mu), polarizability (alpha), and hyperpolariz-abilities (beta, gamma) in conjugated organic molecules. We show that bond-length alternation (the average difference in length between single and double bonds in the molecule) is a key structurally observable parameter that can be correlated with hyperpolarizabilities and is thus relevant to the optimization of molecules and materials. By using this method, the relationship of bond-length alternation, mu, alpha, beta, and gamma for linear conjugated molecules is illustrated, and those molecules with maximized alpha, beta, and gamma are described.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call