Abstract

Missing data can significantly impact dataset integrity and suitability, leading to unreliable statistical results, distortions, and poor decisions. The presence of missing values in data introduces inaccuracies in clustering and classification and compromises the reliability and validity of such analyses. This study investigates multiple imputation techniques specifically designed for handling missing values in ordinal data commonly encountered in surveys and questionnaires. Quantitative approaches are used to evaluate different imputation methods on various datasets with varying missing value percentages. By comparing the performance of imputation techniques using clustering metrics and algorithms (e.g., k-means, Partitioning Around Medoids), the study provides valuable insights for selecting appropriate imputation methods for accurate data analysis. Furthermore, the study examines the impact of imputed values on classification algorithms, including k-Nearest Neighbors (kNN), Naive Bayes (NB), and Multilayer Perceptron (MLP). Results demonstrate that the decision tree method is the most effective approach, closely aligning with the original data and achieving high accuracy. In contrast, random number imputation performs poorly, indicating limited reliability. This study advances the understanding of handling missing values and emphasizes the need to address this issue to enhance data analysis integrity and validity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.