Abstract

In this study, the wear depths under different loads, speeds, lubricant temperatures, and surface roughness amplitudes are experimentally determined using a twin-disk rolling contact setup. A point contact wear model combining a contact formulation and Archard's wear equation in an iterative manner is developed to simulate the wear process of the experiments. By matching the measured and predicted wear profiles, the wear coefficients under different operating and surface conditions are determined. It is found that the wear coefficient increases when either the load or the surface roughness amplitude increases and decreases as the lubricant pressure-viscosity coefficient increases. Within the operating ranges considered, it is observed that the lubricant pressure-viscosity coefficient is the most influential parameter on wear, the load has the least impact, and the surface roughness amplitude is in between. Lastly, a regression formula is given for the estimation of Archard's wear coefficient.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call