Abstract

Condominium prices of a location are heavily impacted by the availability of neighbourhood amenities, which attract people to that location. Studies that employ machine learning to evaluate the impacts of amenities on condominium prices are a few, despite indications of increased accuracy. Hedonic models are used in the majority of current studies on housing pricing. Yet, the application of machine learning will improve accuracy and be more effective for the identification of multi-collinearity and non-linear relationships between property prices and the availability of amenities for a wide range of parameters. The aim of this study is to investigate the possible relationship between urban amenities surrounding condominium apartments and their market prices. The study uses data from the Google Maps Platform to examine the link between neighbourhood amenities and the prices of 236 condominiums in Colombo, Sri Lanka. 56 significant amenity characteristics were found using the eXtreme gradient boosting (XGB) algorithm, and the variety of correlations between amenities and condominium prices as restricted positive, accelerated positive, crooked, humped, and negative was explained. Results demonstrated that while a beautiful urban environment requires a variety of facilities, the popularity and other attributes of amenities affect condominium prices in numerous non-linear ways. Therefore, public and private organizations must work together to create integrative strategies that enhance and maintain the variety and accessibility of urban amenities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.