Abstract

The reaction between hydrogen chloride and propylene has been studied in the gaseous state above the critical temperature and in the liquid state just below the critical temperature. Pressures were used such that the density of the gaseous mixtures could be made as great as the density of the liquid mixture at some temperature.The rate of reaction above the critical temperature increases slowly with increasing pressure until a certain critical density is attained, after which the rate increases rapidly. In the liquid state the reaction has a positive temperature coefficient except for a 25° temperature range just below the critical temperature. In this region there is a rapid decrease in density of the medium with rise in temperature and a negative temperature coefficient occurs.The density of the liquid reactants at a number of temperatures just below the critical temperature (here defined as the temperature where the visible meniscus disappears) has been reproduced above the critical temperature for a small temperature range. The reaction velocity data obtained under these conditions show a minimum in passing through the critical temperature region.The above results have been interpreted on the basis of a "structure" characteristic of the liquid state which favors higher reaction velocity and which may exist above the critical temperature at sufficiently high densities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call