Abstract
In this paper we demonstrate how the global dynamics of a biological model can be analysed. In particular, as an example, we consider a competing species population model based on the discretisation of the original Lotka-Volterra equations. We analyse the local and global dynamic properties of the resulting two-dimensional noninvertible dynamical system in the cases when the interspecific competition is considered to be “weak”, “strong” and “mixed”. The main results of this paper are derived from the study of some global bifurcations that change the structure of the attractors and their basins. These bifurcations are investigated by the use of critical curves, a powerful tool for the analysis of the global properties of noninvertible two-dimensional maps.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.