Abstract

Picric acid (PA) is an important industrial feedstock and hence the release of industrial effluents without proper remediation results in its buildup in soil and water bodies. The adverse effects of PA accumulation in living beings necessitate the development of efficient methods for its detection and quantification. Herein, we describe pyrene-based fluorescent sensors for PA, where pyrene is appended with electron-withdrawing groups, malononitrile and 2-(3-cyano-4,5,5-trimethylfuran-2(5H)-ylidene) malononitrile (DCDHF). These molecules displayed the typical emission of pyrene monomers, as well as a broad red-shifted emission resulting from an intramolecular charge transfer (ICT) in the excited state. Both the emissions displayed a turn-off response to PA with high selectivity and sensitivity and the lowest limit of detection was estimated as 27 nM. To prove the feasibility of on-site detection, test paper strips were prepared, which could detect PA up to 4.58 picograms. Using a combination of experimental and theoretical studies the mechanism of the detection was identified as primary/secondary inner filter effect, oxidative photoinduced electron transfer, or a combination of both depending on the excitation wavelength. Interestingly, the contribution of each of these mechanisms to the total quenching process varied with a change in the excitation wavelength.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call