Abstract

Abstract Theoretical studies via nuclear reaction models have an undeniable importance and impact in terms of better understanding of reaction processes and their nature. In this study, by considering the importance of these models and the medical radionuclides, the effects of six level density models and eight alpha optical model potentials on the cross-section calculations for the production of the radionuclides 62Cu, 67Ga, 86Y and 89Zr via 59Co(α,n)62Cu, 60Ni(α,np)62Cu, 65Cu(α,2n)67Ga, 64Zn(α,p)67Ga, 85Rb(α,3n)86Y, 86Sr(α,n)89Zr, 87Sr(α,2n)89Zr and 88Sr(α,3n)89Zr reactions were investigated. Calculations for each reaction route were performed by using the TALYS v1.9 code. The most consistent model with the literature data taken from the Experimental Nuclear Reaction Database (EXFOR), was identified by using the reduced chi-squared statistics in addition to an eyeball estimation. Also, the effects of combinational use of selected models and potentials were investigated by comparing the calculational results with the experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.