Abstract

Summary This study probes experimentally the mechanisms of heavy-oil solution gas drive through a series of depletion experiments employing two heavy crude oils and two viscous mineral oils. Mineral oils were chosen with viscosity similar to crude oil at reservoir temperature. A specially designed aluminum coreholder allows visualization of gas phase evolution during depletion using X-ray computed tomography (CT). In addition, a visualization cell was installed at the outlet of the sandpack to monitor the flowing-gas-bubble behavior vs. pressure. Bubble behavior observed at the outlet corroborates CT measurements of in-situ gas saturation vs. pressure. Both depletion rate and oil composition affect the size of mobile bubbles. At a high depletion rate (0.035 PV/hr), a foam-like flow of relatively small pore-sized bubbles dominates the gas and oil production of both crude oils. Conversely, at a low depletion rate (0.0030 PV/hr), foam-like flow is not observed in the less viscous crude oil; however, foam-like flow behavior is still found for the more viscous crude oil. No foam-like flow is observed for the mineral oils. In-situ imaging shows that the gas saturation distribution along the sandpack is not uniform. As the pattern of produced gas switches from dispersed bubbles to free gas flow, the distribution of gas saturation becomes even more heterogeneous. This indicates that a combination of pore restrictions and gravity forces significantly affects free gas flow. Additionally, results show that solution-gas drive is effective even at reservoir temperatures as great as 80°C. Oil recovery ranges from 12 to 30% OOIP; the higher the depletion rate, the greater the recovery rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.